首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2399篇
  免费   111篇
公路运输   579篇
综合类   524篇
水路运输   1015篇
铁路运输   337篇
综合运输   55篇
  2024年   6篇
  2023年   36篇
  2022年   60篇
  2021年   78篇
  2020年   103篇
  2019年   77篇
  2018年   37篇
  2017年   84篇
  2016年   98篇
  2015年   115篇
  2014年   169篇
  2013年   138篇
  2012年   211篇
  2011年   243篇
  2010年   109篇
  2009年   140篇
  2008年   129篇
  2007年   176篇
  2006年   125篇
  2005年   109篇
  2004年   53篇
  2003年   33篇
  2002年   29篇
  2001年   21篇
  2000年   14篇
  1999年   25篇
  1998年   15篇
  1997年   16篇
  1996年   14篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   7篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
排序方式: 共有2510条查询结果,搜索用时 328 毫秒
31.
丁昆 《铁道学报》2012,(2):63-69
车辆溜放运动方程是驼峰自动化建模的基础理论,长期以来工程应用中一直按匀变速运动简化处理,不够精确。本文从研究车辆溜放风阻力着手,建立风阻力与溜放速度间的二次方程,通过数学推导获得溜放车辆的非匀变速运动方程,较匀变速运动方程能够更加精确地反映驼峰车辆溜放的运动规律。该方程已作为数学模型成功应用于驼峰自动化系统车辆溜放速度的精确控制与分析,收效甚好。该方程可供驼峰设计方法改进、车辆溜放阻力精确测量和驼峰溜放仿真时借鉴。  相似文献   
32.
轻量化地铁车辆多为以型材铆焊成型的铝合金车体结构,必须具有良好的振动特性,以保证旅客的乘坐舒适性。轨道随机不平顺是引起车辆强迫振动的主要原因,有必要分析轨道不平顺激励下铝合金地铁车辆车体的振动响应,为车体优化设计提供理论参考。详细分析了铝合金A型地铁车辆车体结构特点,经过合理简化几何模型,建立了符合车体结构力学特性的白车身有限元模型。以德国高干扰线路作为激励源,运用多体系统动力学分析软件ADMAS/Rail建立了铝合金地铁动车系统动力学分析模型并计算获得车体在转向架支撑处的动载荷。将所求动载荷施加于车体相应位置,在ANSYS软件中进行车体谐响应分析,计算了车体在轨道不平顺激励下的振动响应。结果显示,车体振动最大峰值频率与车体一阶扭转和一阶弯曲模态频率基本一致。  相似文献   
33.
针对智能车辆纵向运动时的交通道路适应性问题,考虑路面附着系数和前车运动速度等因素,研究了智能车辆纵向运动决策与控制方法。论文研究了基于车头时距的纵向运动决策方法并建立不同驾驶行为的目标车速模型,运用变论域模糊推理算法设计了目标加速度模型。基于纵向动力学模型,运用自适应反演滑模控制算法建立了驱动控制器和制动控制器。对高附着系数路面和低附着系数路面的行驶工况进行仿真试验验证,结果表明,在不同的附着系数路面和前车变速行驶条件下,智能车辆能实时、合理地决策目标车速、目标加速度,实现安全、高效、稳定的跟驰。  相似文献   
34.
The behavior of a ship encountering large regular waves from astern at low frequency is the object of investigation, with a parallel study of surf-riding and periodic motion paterns. First, the theoretical analysis of surf-riding is extended from purely following to quartering seas. Steady-state continuation is used to identify all possible surf-riding states for one wavelength. Examination of stability indicates the existence of stable and unstable states and predicts a new type of oscillatory surf-riding. Global analysis is also applied to determine the areas of state space which lead to surf-riding for a given ship and wave conditions. In the case of overtaking waves, the large rudder-yaw-surge oscillations of the vessel are examined, showing the mechanism and conditions responsible for loss of controllability at certain vessel headings.List of symbols c wave celerity (m/s) - C(p) roll damping moment (Ntm) - g acceleration of gravity (m/s2) - GM metacentric height (m) - H wave height (m) - I x ,I z roll and yaw ship moments of inertia (kg m2) - k wave number (m–1) - K H ,K W ,K R hull reaction, wave, rudder, and propeller - K p forces in the roll direction (Ntm) - m ship mass (kg) - n propeller rate of rotation (rpm) - N H ,N W ,N R hull reaction, wave, rudder, and propeller - N P moments in the yaw direction (Ntm) - p roll angular velocity (rad/s) - r rate-of-turn (rad/s) - R(,x) restoring moment (Ntm) - Res(u) ship resistance (Nt) - t time (s) - u surge velocity (m/s) - U vessel speed (m/s) - v sway velocity (m/s) - W ship weight (Nt) - x longitudinal position of the ship measured from the wave system (m) - x G ,z G longitudinal and vertical center of gravity (m) - x S longitudinal position of a ship section (S), in the ship-fixed system (m) - X H ,X W ,X R hull reaction, wave, rudder, and propeller - X P forces in the surge direction (Nt) - y transverse position of the ship, measured from the wave system (m) - Y H ,Y W ,Y R hull reaction, wave, rudder, and propeller - Y p forces in the sway direction (Nt) - z Y vertical position of the point of action of the lateral reaction force during turn (m) - z W vertical position of the point of action of the lateral wave force (m) Greek symbols angle of drift (rad) - rudder angle (rad) - wavelength (m) - position of the ship in the earth-fixed system (m) - water density (kg/m3) - angle of heel (rad) - heading angle (rad) - e frequency of encounter (rad/s) Hydrodynamic coefficients K roll added mass - N v ,N r yaw acceleration coefficients - N v N r N rr N rrv ,N vvr yaw velocity coefficients K. Spyrou: Ship behavior in quartering waves - X u surge acceleration coefficient - X u X vr surge velocity coefficients - Y v ,Y r sway acceleration coefficients - Y v ,Y r ,Y vv ,Y rr ,Y vr sway velocity coefficients European Union-nominated Fellow of the Science and Technology Agency of Japan, Visiting Researcher, National Research Institute of Fisheries Engineering of Japan  相似文献   
35.
钢管混凝土拱桥在车辆荷载作用下的非线性动力响应分析   总被引:6,自引:1,他引:6  
根据随动硬化理论和钢管混凝土组合材料恢复力模型 ,提出了复杂应力状态下钢管混凝土组合材料的弹塑性应力应变关系。采用非线性有限元法 ,对一钢管混凝土拱桥进行移动车辆荷载作用下车—桥体系的动力响应分析 ,并进一步研究钢管混凝土组合材料进入塑性后对体系振动的影响 ,取得了较满意的结果 ,为钢管混凝土拱桥动力性能评价提供参考。  相似文献   
36.
高速公路事故响应控制模式构建   总被引:2,自引:3,他引:2  
为优化高速公路发生交通事故后的入口匝道调节率,以达到减缓交通拥挤、降低事故冲击的目的,对高速公路交通事故发生后的车流行为进行了研究,以车流行为改变引起的检测信号为基础,建立了控制所需的行为参数集;利用控制理论,构建了高速公路事故动态随机响应控制模式,并利用卡尔曼滤波和线性二次高斯方法求解,通过实例演算进行评析。研究结果表明:提出的控制模式与无控制和定时控制相比较,对中等流量具有较好的控制效果,对较高流量和较低流量具有一定的控制效果,对较高流量和中等流量下的通过率有一定的改善。该控制模式可运用于高速公路智能控制系统之中,提高事故条件下的道路交通服务水平。  相似文献   
37.
汽车四轮转向运动规律分析   总被引:1,自引:0,他引:1  
比较了汽车四轮转向的转向特性 ,概述了四轮转向运动规律 ,分析总结了四轮转向的控制目标 ,指出了四轮转向系统所面临的困难 ,展望了其发展方向。  相似文献   
38.
基于预瞄跟随理论,本文应用一般随机摄动法,对考虑驾驶员不确定性的人-车闭环系统进行响应分析,结合实例,说明该方法在汽车主动安全性评价中的应用。  相似文献   
39.
以位移为基础的钢筋混凝土连续梁桥抗震设计方法   总被引:7,自引:2,他引:7  
利用等效线性化方法将钢筋混凝土(RC)连续梁桥结构简化为多自由度线弹性体系,采用振型反应谱的概念研究了结构在横向地震作用下考虑多阶模态效应的直接基于位移的抗震设计方法。探讨了连续梁桥的上部结构(主梁)及桥墩(台)刚度的变化对结构横向振动模态质量与模态周期的影响,给出了多阶模态设计方法的具体设计过程。对对称与非对称连续梁桥采用相同的设计步骤进行基于位移的抗震设计,并对设计算例用非线性时程分析验证了设计结果的合理性。  相似文献   
40.
非自由液化场地地基动力性能大型振动台模型试验研究   总被引:8,自引:0,他引:8  
基于1∶10模型大型振动台试验,研究非自由液化场地的地基动力性能。液化场地条件下,与自由场地基相比,非自由场地地基的自振频率明显加大、动力耗能作用提高较小。土层液化前且在小震输入下,地基动力变形的线性特征较突出,主要表现为对地震波的动力放大作用,加速度反应自下而上逐渐增大;土层完全液化后,地基加速度反应自下而上也逐渐增大,这是由于液化地基的层间剪切运动加快且加快的速率自下而上逐渐增大所致。地基孔压变化主要受两方面因素影响:一是随埋深减小,孔压减小,但孔压比增大;二是离桩距离越近,孔压和孔压比越大。土层液化前,输入波主要峰值过后,自下而上孔压消散逐渐减慢。较大震输入下,自下而上孔压有减小的趋势,但最大孔压比均很快达到液化孔压比;输入波主要峰值过后,孔压消散很缓慢,尤其是孔压消散随埋深减小越来越慢。试验中还出现瞬时负孔压的有趣现象,这也许是由于可液化土层发生瞬时膨胀作用所致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号